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Abstract. The ground-state characterization of the polaron problem is reuieved within the 
framework of a variational scheme proposed previously by Devreese er al for the bound polaron. 
The formulation is based on the standard canonical transformation of the strong coupling m d r  
and consists of a variationally determined petturbative extension serving for the theory to 
interpolate in the overall range of the coupling constant. Specializing our considerations to 
the bulk and strict two-dimensional polaron models we see that the theory yields signitlcantly 
improved energy upper bounds in the strong coupling regime and, moreover, extrapolates itself 
successfully towards the well-established weak coupling limits for all polaron quantities of 
general interest. 

1. Introduction 

In view of the innumerable amount of papers focused on the study of polarons, we observe 
that the problem, apart from its solid state interpretation, is of more general theoretical 
interest and amactive formally. (For a general review of the subject and the relevant 
approximation methods, see [1,2].) The interpretation of the problem and its mathematical 
structure are relatively simple and well understood in the asymptotic limits. One of the 
basic points of view is the case where the kinetic energy of the electron is much smaller 
than the energy of the phonon modes. In this case the lattice deformation tends to follow the 
electron as it moves through the crystal. A reasonable treatment in such a case is to take the 
electron-phonon interaction as a perturbation and to calculate the corrections to the energy 
eigenvalues brought about by the polaron effect. Another approach which successfully gives 
a good description of the behaviour of the electron and its concomitant lattice deformation 
at weak coupling has been developed by Lee ez ul [3]. This theory is of variational nature 
and leads to essentially the same results as the perturbation theory. 

A contrasting point of view originates from the idea that for a strong enough electron- 
phonon interaction the electron goes into a bound state with a highly localized wavefunction 
in the self-induced potential which is built up by the field of correlated virtual phonons [4]. 
If the electron is really deeply bound one expects the lattice deformation to react back and 
produce some structure in the electronic wavefunction, and the presence of the electron in 
tum determines and maintains the size and shape of the deformation. The point of view 
presented by these arguments is referred to as the strong coupling (adiabatic) theory. 

For a more general view of the problem, not restricted to the limiting regimes, one 
requires more powerful methods or interpolating approximations. The purpose of this paper 
is to refer to such an approximation so as to display a broader insight into the ground- 
state propeq of the polaron problem beyond that given in the weak and strong coupling 
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extremes. The formalism we adopt in this work is based on the method introduced previously 
by Devreese er a2 [SI in their study of the problem of a bulk polaron bound to a Coulomb 
centre. me procedure is an extension of the adiabatic approximation in the sense that a 
strongly coupled polaron state combined with a first-order perturbative extension is used as 
a variational trial state by which it is possible to achieve a satisfying extrapolation towards 
the weak coupling regime. Since the rationale behind this approximation has already been 
given in detail 151, only the essential points and modifications in the formulation will be 
presented. 

In the following we give all emphases on the formal viewpoint of the problem and 
specialize OUT considerations to the bulk (3D) and the strict two-dimensional (ZD) 16, 
71 optical polaron models which have been well established and well understood in the 
literature. 

2. Theory 

2.1. Formal preliminaries 

Regardless of the strength of the electron-phonon coupling we start with a strongly coupled 
polaron state given as a product msafz of the form 

Y = @&JPh (1) 

where @o is the locdized electron wavefunction. For an electron trapped about the origin, 
the optimal lattice wavefunction describing the deformation surrounding the electronic 
charge density can be derived through the displaced oscillator representation 

@ph=U!o) (2) 

where I 0) is the phonon vacuum, and 

in which U Q ( @ O )  is to be adjusted variationally. It should be noted that simultaneous 
optimizations with respect to u ~ ( @ o )  and @o correspond to the self-trapping picture of the 
polaron where the electron distribution and the lattice polarization influence each other 
in such a way that a stable relaxed state is eventually attained. Under the canonical 
transformation H + U-'HU, the Frohlich polaron Hamiltonian (in usual polaron units: 
li = Zm: = q.0 = 1) conforms to 

where p and T denote the electron momentum and position, and Q is the phonon wavevector, 
all of which are to be regarded as three (two) dimensional for the 3D (2D) polaron. With 
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the normalization volume (area) set to unity for notational convenience, the interaction 
amplitude is related to the electron-phonon coupling constant a through 

&IQ in three dimensions 
rQ=[- %a/Q in two dimensions. 

Since the polaron Hamiltonian is invariant to translations of the electron and the lattice 
distortion together, the total momentum 

must be conserved. The variation thus requires an optimization of the polaron state Y which 
minimizes (@ I H I Y) subject to the constraint that (q I P I W) is a constant of motion. 

In the calculations we shall not take any explicit functional form for the electron part 
of the hial state, but instead use the linear combinations of the coordinates and momenta 
of the electron as operators: 

(7) b, = W f i ) ( p P  - $ox,) - ?PO& 

where the index p refers to the Cartesian directions, and U is an adjustable parameter with 
u-l/2 yielding ' a measure of the spatial extent of the electron. The vector po is introduced 
as a further variational quantity in the theory so as to account for the composite inertia of 
the electron dressed by the cloud of virtual phonons. 

I [b,, $.I= &,, 

Defining the ground state of the coupled electron-phonon system by 

b,10)=0 aQ10)=0 ( O l O ) = l  (8) 

and minimizing the functional 

@(U,U;po,uQ) EZ (olu-'(ff-u.P)UIo) (9) 

p0 = ( 1 / f i ) U  and U Q  = rQSQPQ (10) 

SQ = (0 I exp(fiQ. T )  I 0) = exp(-Q2/Zu) 

pp = (1 - W .  Q)-' 

with respect to po U Q  yields 

where 

(11) 

(12) 

in which the Lagrange multiplier U is to be identified as the polaron velocity (see, e.g., [SI). 
In what follows we shall consider the case of a stationary polaron, i.e. take (0 I 

U-'PU I 0 )  = 0, and thus regard U as a virtual velocity which we retain in our calculations 
to keep track of the effective mass of the coupled electron-phonon system. 

In complete form, with the optimal fits for po and U Q  substituted in, the Hamiltonian 
which we shall be refemng to hereafter is 
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where 

V Q  = exp(iQ. T )  - ~ Q P Q  
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in which eo takes the value :U in three dimensions and ;U in two dimensions. 
Similarly, for the total momentum transformed accordingly, P + U-'PU, we have 

where the components of the electron momentum are given through 

pP = i f i ( b P  + b i )  t ;uP. (17) 

2.2. The variational trial state 

If what interested us was solely the strong coupling regime. all that would remain would 
consist of a further optimization of (0 I (H' - v . P') I 0) with respect to U .  We retain 
the results pertaining to the largea limit until later and point them out as a special case 
of the more general results which we derive in the next section. Here, our concern is to 
adopt the variational scheme of Devreese et al [5] where the adiabatic polaron trial state is 
modified accordingly so as to cover the overall range of the coupling strength. For the sake 
of completeness, in this and the following subsections we choose to include a brief revision 
of the basic essentials in the variational ansafz advanced in 151. The major distinction which 
sets the present concern apart from that in [51 is that we confine ourselves to a totally free 
polaron model with a virtual momentum imposed to the coupled electron-phonon complex 
through the factor pp multiplying the term SQ in the Hamiltonian (13). 

Regardless of the value of a, no matter how small it is, the procedure is still to 
continue with our considerations from equation (13), since with decreasing a the degree of 
localization of the electron becomes reduced in a significant manner; eventually SQ tends to 
zero on the average and thus H' converts back to the starting Hamiltonian H in which for 
weak a the Frohlich interaction Ea rQ[exp(iQ. T)UQ + HC] should serve as the perturbing 
term. In view of this reasoning one is led to @eat the last term in equation (13) as a 
perturbation. Since at present we limit ourselves to the case of a stationary polaron, we 
first would like to bring about an insight into the problem with p~ in equation (13) set to 
unity, thereby obtaining a means of characterizing the polaron (i.e. calculating the optimal 
U value and hence the binding energy, for instance) for the case when v = 0. Thereafter 
we shall turn on the velocity to keep track of the polaron mass under a virtual translation 
of the electron and the lattice distortion together. 

In the perturbation treatment of the Frohlich interaction, the first non-vanishing 
contribution to the ground-state energy comes from the term which is of second order in 
the interaction amplitude. Correspondingly. the leading correction to the trial state defined 
through equation (8) is of first order. The ground-state trial wavefunction for H' and for 
the constraint that the total momentum P' be conserved then becomes extended to 
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In equation (18), c is a constant which serves for normalization, and the index i refers 
to the intermediate states consisting of the electron and one phonon with wavevector 
Q. The summation over the intermediate states is a rather difficult task since now the 
states themselves and the componding energies depend on a and the lattice coordinates in 
involved manners. Nevertheless, this shortcoming can be eliminated by replacing the energy 
denominator by an average quantity which in the calculation will be determined 
variationally. Using completeness the i summation can be projected out to yield [5] 

IO') = C I O )  + C r p g p ( e x p ( - i ~ . r )  - s ~ ) ~ ; I o ) .  (19) 
Q 

The variational parameter gQ sets up a fractional admixture of the strong and weak coupling 
counterparts of the coupled electron-phonon system and thus is expected to serve for the 
theory to interpolate between the extreme limits of the coupling constant. 

2.3. Formulation 

The requirement that the trial state I 0') be normalized poses yet a further constraint, 
interrelating the parameters c and gQ through 

in which 

h e =  (OI(exp(iQ.r)-sp)(eXp(-iQ.f)-~~)lO) = 1 -si. (21) 

In order to find the optimal fit to go one has to minimize the expectation value of Hi-v.F" 
in the hid state (19) subject to the constraint (20). Within the framework of the modified 
trial state IO') the functional (9) now takes the form 

4(U,  V ;  C,  gQ) = C'@O + $Uz) - $U' f (1 - k 2 ) x  
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The variational procedure requires 

(27) 
a 

-{@(U7 21; C, gQ) - A.ff(cs g Q ) }  = 0 
agQ 

where A is a Lagrange multiplier. It then follows that the functional @ is given by 

(28) I 2  
@(U, U) =eo - x - ?U + A  

where A is derived through the transcendental equation 

1 = r i k Q / c ) h Q  
Q 

in which 

gQ/C = - h e / D Q  DQ = e p  - 6~ + (1 -eo - i U ’ - t  2x - A)hp. (30) 

In order to trace out the polaron mass from equation (28) we have to split @(U, v )  into 
its parts, consisting of the binding energy of the polaron alone and the additional kinetic 
contribution which shows up after imposing a virtual momentum on the polaron. We are 
thus tempted to expand equations (U). (25) and the summand in equation (29) in a power 
series up to second order in U. Letting 

we obtain 

where 

E&) = eo - x ( O )  +A. (34) 

refers to the ground-state energy and the factor mp multiplying $u2 is identified as the 
polaron mass, given by 

with d standing for the dimensionality (i.e. d = 3 or 2 for the 3D or ZD polarons, 
respectively). 

For the set of parameters x ( O ) ,  x(” ) ,  S$) and 66). we have 

(36) 

(37) 

x(o) = risk = [ in three dimensions 
Q (cr/2)& in two dimensions 

x‘”) = (4 /d)  c ris$Q2 = (Z/d)ux’O) 
Q 
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and 

(4/i)@sterf(i2&) in three dimensions 

4,y(0)s~'ze-~ IO({) in two dimensions 
(38) 

=zx(o'(l+s;)- 

= (4/d) rbSQ'A.eQ'QR = 2x(")(1 +Si) 
Q' 

4dx(')sr(ir. Q)z in three dimensions 

4dx( ' )~ re -~ [ ( f  + ;)Zo({) +$21(6 ) ]  in two dimensions 

(39) 

where 6 = Qz/Su, and the symbols IO and I I  denote the zeroth- and first-order modified 
Bessel functions, respectively. 

It should be clear that in deriving equation (33) we have regarded the parameter 
A, involved in e uations (34) and (3.5). as to be obtained from equation (29) for when 
g Q / c  = -hQ/D!, i.e. for the case where the polaron is taken as stationary. 

3. Results and eonelusions 

Due to the analytic complexity, the optimal fits to A and a are to be performed by numerical 
methods within an iterative scheme. The results incorporating equations (34) and (35) 
become more comprehensive and immediate, however, in the extreme limits of strong and 
weak coupling. (For the corresponding asymptotic limits in three dimensions the reader is 
refered to [5].) 

When the binding is very deep one expects the energy eigenvalues of the unperturbed 
Hamiltonian, and hence the differences in them, to be significantly larger than the LO- 
phonon energy, which we take to be unity in our dimensionless units. If what we 
are applying were ordinary perturbation theory the only significant contribution in the 
perturbation sum would come from the leading term i = 0, for this term has the smallest 
energy denominator. Dropping all terms except i = 0, we arrive at exactly the same 
expression obtained by the present calculation with A = 0. This verifies the equivalence 
of the two approaches in the limit of large a. On the other hand, as the coupling constant 
is made smaller, the corresponding perturbation series becomes slowly convergent and one 
needs to include the remaining terms, apart from i = 0, as weU. This is accomplished in 
the present formalism by simply solving the transcendental equation (29) for the Lagrange 
multiplier A. 

For large coupling constants the electron gets highly localized (U = O(or2) >-> 1). SQ 
becomes unity on the average, and thus hQ. and hence A, tend to zero and the strong 
coupling limit is readily attained. For a loosely bound electron, however, the role A plays 
becomes very prominent and the polaron binding is dominantly determined by this term. 

In the l i t  LY << 1, equations (34) and (35) simplify greatly. In this extreme, SQ w 0 
( h p  = 1) and, moreover, the quantities U, eo, x(O) and 8:) fall off rather rapidly with an 
order of magnitude of az. The decay rates of x(") and 8;) are even faster, going as a3 on 
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the average. Omitting the contributions coming from such terms and retaining terms up to 
order CY only, equation (34) reduces to 

A Ergelebi and R T Senger 

Q 
in three dimensions 
in two dimensions. 

w - = 
1 + Q2 I-" - (R/~)cu  Q 

Similarly, equation (35) conforms to 

1 + (1/6)a in three dimensions 4 QZ 
rZ, (1 + @)3 1 + (n/S)(r in two dimensions. = I  mp FJ 1 + ;i 

As a further polaron quantity of general interest, we also calculate the mean number of 
phonons, nph = (CY I U-' c ~ + Q u  I 0'). clothing the electron. Using equation (20) we 
obtain 

which, in the limit CY + 0, simplifies to 

1 in three dimensions 
"ph ri (1 + Q2)2 = [ in two dimensions. Q 

(43) 

m e  asymptotic expressions (40)- (41) and (43) thus exemplify the essential role which A 
plays in making the adiabatic approximation go over to the results derived from the ordinaq 
perturbation theory. 

In order to provide a general display of our results (beyond those for a >> 1 and 
CY < 1). we minimize equation (34) numerically over a reasonably broad range of CY for 
the 3D and 2D polarons. In figure 1 we plot the binding energy ( E ~  = IE,I) and the phonon 
contribution to the effective mass @L = nap - 1) as a function of the coupling constant, 
including also a comparison of the present results with those of the strong coupling and 
perturbation theories. An immediate glance at the set of curves on the 1arge-a site reveals 
that the strong coupling theory deviates considerably from the present formalism except 
in the extreme limit CY >> 1. The reason is that the pure strong coupling treatment of the 
problem is totally inadequate to reflect any weak coupling aspect for not too strong CY. This 
shortcoming is. however, eliminated in the present approach by preserving I in  equation 
(34). since it is only through this term that a detailed interbalance is set up between the 
strong and weak coupling counterparts of the problem. 

A further feature pertaining to the regime of strong phonon coupling is that, with growing 
a, the rate at which the the strong coupling and present theories approach one another and 
eventually match is relatively faster in two dimensions than in three. For CY = 10, for 
instance, we find .cP = 12.30 for the 3D polaron, whereas the corresponding strong coupling 
value is a2/3n = 10.61, yielding a deviation somewhat close to 14%. The discrepancy 
for the 2D polaron, while still not negligible, is, however, not more than 3%. This is 
merely a consequence of the general trend that the electron-phonon interaction is inherently 
stronger in system of lower dimensionality. For the ZD polaron, the theory therefore puts 
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Figure 1. (a) The binding energy and (6) the phonon contribution to the effective mass as a 
function of e for the 3~ and w polarons. The broken lines refer to the results of the smng 
coupling and second-order permbation theories. The centred dots display he 3~ results of the 
generalized path integral formalism of [9]. 

comparatively less weight on the role which the parameter A plays in equation (34), thus 
adding somewhat more emphasis to the strong coupling counterpart of the problem. 

A complementary remark in connection with the improvement achieved through the 
perhubative extension in the trial state (19) is that the theory gives very satisfying results in 
the strong coupling regime. For the U )  polaron for example, the bare strong coupling theory 
(under a Gaussian electron profile) gives E, = -(n/8)n2 = -0 .3927~~.  The presumably 
exact upper bound for the ground-state energy has been obtained as -0.4047~~ by Wu et 
a1 [IO], utilizing what they refer to as the modified Pekar-type UIISQ~Z: 

@O - (1 + br + + ~ ( b r ) ~  + d(br)4)e-b'. (44) 

Even though the usage of such a four-parameter form for the electron wavefunction would 
have been more appropriate, in equation (19) we have chosen to use the approximate 
Gaussian form (via the set of operators b, and bL) to facilitate our calculations which 
would be very tedious otherwise. Yet, in spite of this simplification, we see that, for large 
but finite U, the trial state (19) yields far better results compared with those obtained from 
the expression -(n/8)u2. For LY = 10, for instance, the energy value we attain is -40.43, 
which is fairly close to the exact upper bound within 0.1%. Clearly, in the limit U + 00, 
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the present results asymptotically tend to the usual approximate value -(n/8)a2 due to the 
a priori Gaussian type character embedded in our trial wavefunction. 

In view of the results we have obtained, we see that the formulation we have considered 
is quite successful, in that the theory, starting from an aprion strongly coupled polaron state 
and generating fairly good results for large a, extrapolates towards the opposite extreme and 
yields the correct perturbation values within first-order a. We should, however, note that the 
theory is quite poor in characterizing the free polaron in the intermediate coupling regime 
(cf figure I@)). We feel that the drawback encountered here stems from the fact that, in 
aniving at equation (19), the variational parameter go is intrcduced to replace the energy 
denominator h i - . ,  as averaged out over the intermediate state index i ,  thus containing only 
an average of the detailed content of the Frohlich interaction interrelated to each of the 
intermediate states involved in the perturbation sum in equation (18). 

With respect to the discontinuous phase-transition-like behaviour of the polaron (from 
the quasi-free to the self-trapped state), as suggested by a number of works in the literature 
(cf [ l l ,  121, for instance), we should point out that no evidence in favour of such a phase 
transition has shown up in the present treatment of the polaron problem. To understand 
whether or not the polaron conforms from one phase to the other in an abrupt manner has 
always been a challenging and controversial aspect of the problem in both three and two 
dimensions. It has, however, been well established now that the qualitative changes in the 
polaron quantities do actually take place in a smooth and continuous way, and that any 
non-analytic behaviour encountered is an artefact of the approximating theory rather than 
an intrinsic property of the Friihlich Hamiltonian 113, 141. 

In summary, this work revises the free-polaron problem within the framework of 
the variational theory of Devreese et al, consisting of an adiabatic polaron wavefunction 
combined with a first-order perturbative extension, by means of which it is possible to 
interrelate the weak and strong coupling counterparts of the system in the overall range of 
the electron-phonon coupling strength. We see that the theory, besides yielding significantly 
improved energy upper bounds for strong phonon coupling, is well capable of extrapolating 
itself towards the weak coupling regime within leading-order perturbation calculations. 
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